Admitting humanity in this year’s Nobel Prize in Physics

One-half of this year’s Nobel Prize for Physics went to Michel Mayor and Didier Queloz for their discovery of 51 Pegasi B – the first planet observed to orbit a sun-like star other than our own. While the work marked a turning point in our understanding of the Universe, more than 4,000 such extrasolar planets have now been discovered, I think that some honest comments about a common experience in science made by Dr. Queloz deserve some attention as well.

The discovery of 51 Pegasi B was during Dr. Queloz’s Ph.D. work, Dr. Mayor was his advisor. At the time, 1992, the only planet outside of our solar system that had been found was around a pulsar: the rapidly spinning ember of a dead large star. The wobble caused by the planet in the otherwise regular radiation emissions of the pulsar made it comparatively easy to detect. However, the probability of life as we know it on such a planet is exceptionally low. One common attitude in the community at that time, according to Dr. Fischer of Yale, was that “Maybe most stars don’t form with planets and our solar system is unusual and life is incredibly rare.”

It was pretty clear I had no hope

Dr. Queloz describing beginning his Ph.D. work which ultimately won the 2019 Nobel Physics Prize

Thus, while starting a Ph.D. to search for extrasolar planets, Dr. Queloz was not expecting to find any, “It was pretty clear, I had no hope,” he said to the New York Times. Part of this hopelessness was rooted in the expectations of the time that any planets whose effects would be large enough to detect would orbit at such a distance that many years would be required to detect them. For example, Jupiter’s impact on our star has a period of over 11 years.

However, I know that these feelings of hopelessness are actually a quite common expectation of many students at the beginning of their Ph.D.’s independent of the particular field of physics. I know I had them. Here you are, joining this community of brilliant, and exceptionally hard working people, and you think to yourself, “what are the odds that I will find something that these other people, who have been working at this potentially their entire lives have not?” These feelings can be quite daunting.

Even when Dr. Queloz did find evidence for 51 Pegasi B in 1994, he was reluctant to show the results to Dr. Mayor, his Ph.D. advisor who was at the time on sabbatical half-way around the world. The evidence pointed to a planet unlike anything in our solar system: a huge Jupiter sized planet that is so close to its parent star that it orbits in only 4 days (Mercury, in inner-most planet in our solar system by comparison, takes about 88 days). Furthermore, the models of planet formation prevalent at the time suggested that forming such a large planet so close to a star should be impossible.

Again, doubt crept into Dr. Queloz’s mind. Which was more likely, that he had found something completely new far faster than anyone had predicted, or that, as a new student he had made a mistake? According to the New York Times:

Dr. Queloz did not feel ecstatic, but rather ashamed, certain that something was wrong with the instrument or his software.

“I really panicked at that time,” Dr. Queloz said. “I didn’t talk to [Dr. Mayor] at all.”

Chang, K., & Specia, M. (2019, October 8). Nobel Prize in Physics Awarded for Studies of Earth’s Place in the Universe. The New York Times. Retrieved from https://www.nytimes.com/2019/10/08/science/nobel-physics.html

I really feel that this is a set of emotions that all students have at some point: “I must be wrong,” “my advisor is the expert,” “who am I to…” Getting over these feelings is I guess part of maturing into an independent scientist.

In this case, the results were real and 24 years after their announcement in 1995, resulted in a Nobel Prize. I think acknowledging that most most Ph.D. theses don’t follow such a trajectory is important. Instead, we as Ph.D. students add our small bit to the cumulative knowledge of humanity and, perhaps more importantly, learn to become independent scientists along the way. However, the feelings expressed publicly by Dr. Queloz are, I think, common, and I hope that through expressing them we can further debunk the “super-brillant professor” stereotype, which can exacerbate equity issues in science according to Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262–265. https://doi.org/10.1126/science.1261375.

An article in the NYTimes on equity in classrooms

I Was a Low-Income College Student. Classes Weren’t the Hard Part from the September 10th New York Times, is an excellent piece by Anthony Abraham Jack, a professor at the Harvard Graduate School of Education, on his experience as a low-income student at our neighbor: Amherst College. The article articulates several, perhaps less commonly considered, challenges that students with lower incomes face in the college environment. What can we do within the structure of our classrooms to mitigate some of these challenges? A few thoughts from our experiences here at UMass

Moving to free and open textbooks and homework systems. In physics 131 and 132, I use a custom free-and-open educational resources. These textbooks reduce the cost down to $35 for access to the online homework system. This cost is quite low compared to other courses on campus. However, even so, I still usually have a handful of students who come to me asking for an extension on the first homework because they need to wait for a paycheck to afford this. Fortunately, I can make an arrangement with the textbook company who manages the homework system to get a temporary access.

A bias still exists, however. I can only help those students who come forward and ask for it. I have also experienced students who, at the end of the semester (when students start to calculate their grades), come forward and tell me. I, of course, make allowances, but my range of options reduces as the semester progresses.

While I am currently working to develop a system that will be completely free-to-students, until that project is finished, I will make a note in my syllabus explicitly inviting students to see me if they are having financial challenges that prevent them from accessing this required resource.

Another important consideration is the fact that students with lower incomes, almost uniformly, must work. These additional scheduling constraints, also an issue for students with familial obligations, can make attending traditional office hours a challenge. These issues are why we offer a TA-staffed consultation room with a wide variety of hours, including later in the evening. Since moving from individually selected office hours to this more centralized system, we have observed an increase in office hour usage.

We gave a workshop on GTA training programs based on P691G!

Today, I, along with Jake Shechter and Sara Feyzbakhsh, gave a workshop on developing GTA/TO training programs as part of Diversity Lunch Talk series hosted by the UMass-Amherst Institute for Teaching Excellence and Faculty Development. We had a group of people from all over the university from Comparative Literature to Microbiology.

In the workshop, participants thought about the TA-training needs for their specific departments and also what resources might be available as far as implementing their training goals. The workshop ended with participants thinking about designing an activity to facilitate TA skill development.

As part of building this workshop, we completely revamped the P691G portion of this website. This series of pages on our particular course now goes into rather extensive detail and includes a survey of the different pedagogical techniques that we use. The goal is to provide an easily navigable resource for people to gain inspiration for their own programs.

Thanks to Jake and Sara for helping me refine this course as well as in assisting in the development and facilitation of this workshop.

Getting Graduate Students Comfortable with their Power

A little background: within Physics 691G, we do a two-week unit on issues of identity in the classroom. We segue into the unit by thinking about the challenges in evaluating teaching which is done in the context of the new grads observing more experienced TAs. After we explore the challenges of evaluating teaching, the new grads complete an worksheet based upon an exercise developed by Kirsten Helmer of TEFD. In this assignment, the new grads must they explicitly consider their positionality along multiple axes. We then spend two weeks looking at case studies of various interactions within the classroom. During the first week, we investigate situations where the new grads identity as a student is salient. The second week, we move to situations where their identity as instructors is more relevant. In that second week, many of the new grads seemed uncomfortable with the power that being in an “instructor” role bestows.

Continue reading Getting Graduate Students Comfortable with their Power

Brokk’s reflections on AAPT Summer Meeting 2018

During my AAPT SM18 experience, I focused on presentations and posters from three main areas in which I have deep personal interest: IPLS/curriculum development, diversity/equity in physics, and self-efficacy/attitudes. In addition, I attended several sessions related to areas of interest for our department, specifically on integrating computation through the curriculum. In this post, I will synthesize and reflect on my take-aways from the conference. I saw a lot of good talks. As such, this post is somewhat long.

Continue reading Brokk’s reflections on AAPT Summer Meeting 2018