How to manage groups more efficiently – from “Get Better Faster”

I am currently reading a book entitled Get Better Faster: A 90-Day Plan for Coaching New Teachers by Paul Bambrick-Santoyo. While a more detailed review will come later, there is one point that is of particular interest. The author suggests that, when monitoring student work, the monitors (in my case myself and the TAs) should go to the fastest groups first. At first glance, this seems counterintuitive: shouldn’t the in-class assistants spend the most time with those groups who struggle the most? Bambrick-Santoyo, however, points out that going to the fastest groups first has two benefits:

  1. The in-class assistants get a good sense of where the students are likely to struggle and what alternative conceptions students have. While I always encourage my TAs to work the problems in advance and while we discuss them in our weekly meetings, these efforts are not always sufficient. By attending to the fastest groups first, TAs in particular get a in-the-trenches sense of where students are likely to stumble.
  2. Attending to the fastest groups first gives those groups who need a little more time the time they need to progress to the point where they are in a position to ask a question or get feedback.

Again, I am sure there will be more to come from this book, but I wanted to share that out.

Reflections on Physics 132 Spring ’22 Part I – Updates on the use of TAs in large-enrollment Introductory Physics for Life Sciences courses

Another semester is in the bag, and, if all goes according to plan, this will be the last time I teach physics 132 for quite a while. As such, I think a deep reflection on the semester is particularly warranted. While some changes/additions such as a fully remote option, there were several attributes added or revamped for this semester’s course. These, and existing features, all need consideration for their successes and areas for improvement. This is the first post in a series taking that deep dive into reflecting on Physics 132 Spring 22.

The teaching of large enrollment courses is always a team effort: requiring not only the instructor but also support staff such as lecture prep as well as both graduate and undergraduate teaching assistants (TAs). During the Spring 2022 semester, Physics 132 had two graduate and seven undergraduate TAs. In order to optimally support student learning, I feel that, as leader of this team, my critical roles include: forming a team with diverse experiences and knowledge; leveraging each team member’s unique knowledge, skills, and perspective; promoting a culture wherein each TA feels their expertise is acknowledged; ensuring everyone feels comfortable in their role and empowered to do their best to support students.

 A successful TA team begins at its formation. When I started at UMass in 2015, I used graduate TAs exclusively as that was my prior experience. As time went on, and the level support I felt was necessary increased, I began to hire undergraduate TAs to help fill the gaps using exclusively upper-division physics majors. This preference for physics majors was not carefully considered. I am somewhat ashamed to admit this preference arose from a sort of “physics chauvinism.” I assumed that majors in their third and fourth years, with their presumably deeper knowledge of the content, would make the best TAs.

I have since discovered what, in retrospect, should have been obvious: that a more diverse teaching team that mixes in life-science majors who had previously been successful in the class was superior. While my assumption regarding the deeper knowledge of upper-division physics majors has turned out to be true, life-science majors bring several other important attributes which strengthen the team as a whole.  

The undergraduate Physics 132 alums not only bring their valuable perspective as former students in the course to the TA role, but also their life science knowledge and disciplinary mode of thinking are useful to share with the physicists on the team. Physics 132 is very much an introductory physics for life sciences course. In addition to biological applications sprinkled throughout the material, each unit has a central biologically- or chemically-authentic motivating context [link to talk]. Having biologists on the teaching team can help make these examples more authentic and can ensure that I am using the language with which my life-science students will be familiar. For example, I was using the term van der Waals interactions. However, thanks to my undergraduate TAs, I learned that the term London dispersion forces is more common. Thus, I switched to primarily using London dispersion forces while still mentioning van der Waals for those who may be more familiar with that term.

To further empower my team members, I adopted a new format for my weekly team meetings taken wholesale from Prof. Guy Blaylock in our department. In past semesters, I struggled with promoting engagement during these planning and preparation sessions. TAs would often remain quiet while I presented information about upcoming topics and would even remain reticent when I explicitly solicited their feedback on student challenges they had observed. Prof. Blaylock’s practice for these meetings involves assigning one teaching team member each week to present on the upcoming material with an emphasis on the particular challenges that they think students might face along with suggestions on how they themselves learned the material. To ensure that the presenting member was fully prepared for this role, they were notified a week in advance and had access to the prior semester’s materials.

This meeting format has, in my opinion, been a wildly successful switch. All my TAs were more engaged throughout the meeting process – not just when it was their turn to present. These presentations resulted in more feedback from the TAs on student difficulties, their own struggles with the material. I feel that giving officially dedicated space for TA insights gave them all permission to contribute as full members of the teaching team.

My role in these discussions was often became that of “translator:” explaining biological concepts to the physicist members of the teaching team and physics concepts to the biologists. This role forced me to grapple more deeply with the disciplinary differences between biology and physics resulting in, I feel, a better understanding for myself and thus a better course.

These observations are not just my own. The TAs themselves shared similar opinions in an end-of-semester evaluation of me. In the words of one TA, “I thought the structure of the team meetings each week was quite beneficial. Specifically, having each TA lead a brief discussion on the current and/or upcoming topic being taught in class often provided the rest of the team with tips on how to explain concepts students often struggle with using different approaches and perspectives that are conducive to a more wholesome understanding. Overall, the team meetings were more involved than those I attended the previous semester, which I felt made a difference in the way I engaged with students taking the course both during class and in the physics help room; there were numerous times were I employed suggestions taken from the team meetings and found that the concepts clicked with students after doing so.”

Beyond ensuring that the TAs were prepared for the material, I feel that giving the TAs the potential for ownership helped them feel more comfortable sharing other challenges with me. For example, two young women on my teaching team were comfortable enough to share some personal difficulties they were having with some students in the help room. I am very glad that I was able to create a sufficiently trusting environment that these two young women felt comfortable sharing this with me and that we were able to work together to find a solution to address the issue.   The fundamental philosophy of these meetings is, I think, beneficial to leadership in general: allow the team to have a substantial and empowered leadership role (as opposed to simply explaining their importance as I used to do). While I know that this is not at all a new idea, as a faculty member moving in to more roles of leadership, such insights are of critical importance. Perhaps a similar philosophy could be, at least partially, implemented in 691G?

Graduate Students’ Teaching Experiences Improve Their Methodological Research Skills

Feldon, David F., James Peugh, Briana E. Timmerman, Michelle A. Maher, Melissa Hurst, Denise Strickland, Joanna A. Gilmore, and Cindy Stiegelmeyer. “Graduate Students’ Teaching Experiences Improve Their Methodological Research Skills.” Science 333, no. 6045 (2011): 1037–39.

I was meeting with Colleen Kuusinen, a new member of our Center for Teaching and Learning on a new project I am pursing as an Honors Thesis mentor. During our conversation, she mentioned this paper from 2011 which indicates that teaching experiences are beneficial to developing graduate students’ research skills. In this paper 95 graduate students’ research proposals were graded in accordance with a peer-reviewed “‘universal’ rubric for assessing undergraduates’ scientific reasoning skills using scientific writing” from B. Timmerman et al., Assess. Eval. High. Educ. 36, 509 (2011). The results were quite impressive as shown in the figures below. I think that these results only further the importance of developing good TA training.

Admitting humanity in this year’s Nobel Prize in Physics

One-half of this year’s Nobel Prize for Physics went to Michel Mayor and Didier Queloz for their discovery of 51 Pegasi B – the first planet observed to orbit a sun-like star other than our own. While the work marked a turning point in our understanding of the Universe, more than 4,000 such extrasolar planets have now been discovered, I think that some honest comments about a common experience in science made by Dr. Queloz deserve some attention as well.

The discovery of 51 Pegasi B was during Dr. Queloz’s Ph.D. work, Dr. Mayor was his advisor. At the time, 1992, the only planet outside of our solar system that had been found was around a pulsar: the rapidly spinning ember of a dead large star. The wobble caused by the planet in the otherwise regular radiation emissions of the pulsar made it comparatively easy to detect. However, the probability of life as we know it on such a planet is exceptionally low. One common attitude in the community at that time, according to Dr. Fischer of Yale, was that “Maybe most stars don’t form with planets and our solar system is unusual and life is incredibly rare.”

It was pretty clear I had no hope

Dr. Queloz describing beginning his Ph.D. work which ultimately won the 2019 Nobel Physics Prize

Thus, while starting a Ph.D. to search for extrasolar planets, Dr. Queloz was not expecting to find any, “It was pretty clear, I had no hope,” he said to the New York Times. Part of this hopelessness was rooted in the expectations of the time that any planets whose effects would be large enough to detect would orbit at such a distance that many years would be required to detect them. For example, Jupiter’s impact on our star has a period of over 11 years.

However, I know that these feelings of hopelessness are actually a quite common expectation of many students at the beginning of their Ph.D.’s independent of the particular field of physics. I know I had them. Here you are, joining this community of brilliant, and exceptionally hard working people, and you think to yourself, “what are the odds that I will find something that these other people, who have been working at this potentially their entire lives have not?” These feelings can be quite daunting.

Even when Dr. Queloz did find evidence for 51 Pegasi B in 1994, he was reluctant to show the results to Dr. Mayor, his Ph.D. advisor who was at the time on sabbatical half-way around the world. The evidence pointed to a planet unlike anything in our solar system: a huge Jupiter sized planet that is so close to its parent star that it orbits in only 4 days (Mercury, in inner-most planet in our solar system by comparison, takes about 88 days). Furthermore, the models of planet formation prevalent at the time suggested that forming such a large planet so close to a star should be impossible.

Again, doubt crept into Dr. Queloz’s mind. Which was more likely, that he had found something completely new far faster than anyone had predicted, or that, as a new student he had made a mistake? According to the New York Times:

Dr. Queloz did not feel ecstatic, but rather ashamed, certain that something was wrong with the instrument or his software.

“I really panicked at that time,” Dr. Queloz said. “I didn’t talk to [Dr. Mayor] at all.”

Chang, K., & Specia, M. (2019, October 8). Nobel Prize in Physics Awarded for Studies of Earth’s Place in the Universe. The New York Times. Retrieved from https://www.nytimes.com/2019/10/08/science/nobel-physics.html

I really feel that this is a set of emotions that all students have at some point: “I must be wrong,” “my advisor is the expert,” “who am I to…” Getting over these feelings is I guess part of maturing into an independent scientist.

In this case, the results were real and 24 years after their announcement in 1995, resulted in a Nobel Prize. I think acknowledging that most most Ph.D. theses don’t follow such a trajectory is important. Instead, we as Ph.D. students add our small bit to the cumulative knowledge of humanity and, perhaps more importantly, learn to become independent scientists along the way. However, the feelings expressed publicly by Dr. Queloz are, I think, common, and I hope that through expressing them we can further debunk the “super-brillant professor” stereotype, which can exacerbate equity issues in science according to Leslie, S.-J., Cimpian, A., Meyer, M., & Freeland, E. (2015). Expectations of brilliance underlie gender distributions across academic disciplines. Science, 347(6219), 262–265. https://doi.org/10.1126/science.1261375.

Getting Graduate Students Comfortable with their Power

A little background: within Physics 691G, we do a two-week unit on issues of identity in the classroom. We segue into the unit by thinking about the challenges in evaluating teaching which is done in the context of the new grads observing more experienced TAs. After we explore the challenges of evaluating teaching, the new grads complete an worksheet based upon an exercise developed by Kirsten Helmer of TEFD. In this assignment, the new grads must they explicitly consider their positionality along multiple axes. We then spend two weeks looking at case studies of various interactions within the classroom. During the first week, we investigate situations where the new grads identity as a student is salient. The second week, we move to situations where their identity as instructors is more relevant. In that second week, many of the new grads seemed uncomfortable with the power that being in an “instructor” role bestows.

Continue reading Getting Graduate Students Comfortable with their Power