Incorporating Student Choice into IPLS

Listening to the most recent paper-cast episode on student choice has given me some good ideas. This paper makes a very good case for providing students with choices of additional work beyond that which is mandatory. One way this could be done in 131 and 132 is by allowing for the option of Perusall comments within the textbook. This would allow students to opt in to the Perusall, an assignment which I believe to be valuable, but has traditionally been divisive. Perhaps that would encourage more detailed reading along with the homework.

Another idea would be for students to turn in additional practice problems. Many students request that I collect the additional practice problems for a grade. I have traditionally not done as an acknowledgement of the amount of work required for preparation in these flipped courses. However, if students can opt in to that assignment, then my concern is rendered moot.

Of course we wouldn’t be able to grade all of the problems. However we might be able to do a grade a subset or allow students to you know choose to turn in a certain number and we will grade a subset of that or some combination. For example we could require students to turn in a total of 10 problems with you know at least two from each worksheet by the end of the unit we would then grade five of these 10 on a 0-1-2-3 type scale.

In terms of the overall course grade distribution, we currently have a small percentage dedicated to the metacognitive journals which I also believe to be valuable but are, again, divisive. Some students find them quite valuable, but others see it as busy work. I suspect this is mostly a reflection of the amount of time students’ spend on it. However, I could make that percentage a student choice: they could choose for that portion of the grade to be one of these assignments. Perhaps even allowing for some switching over the course of the semester on a unit-by-unit basis. Students would then have the option of choosing an activity that best supports their learning, or they could choose to do none of these activities and have that additional portion of the grade just be reallocated to the standard preparatory homework or something to that effect.

Thoughts on “Using Framing as a Lens to Understand Context Effects on Expert Reasoning”

After listening to this paper, a few things are interesting right out of the gate:

  1. The resource model of cognition hasn’t really propagated to biology yet.
  2. Two they point out that experts have learned to reason across disciplines using cross-cutting concepts. Could it possibly be that experts have gained this ability because they were exposed to it in different contexts? I don’t think this is true but it’s worth thinking about the fact that it could possibly be.
  3. I like the idea of engineers as existing in the middle of the idealized/real-example continuum with physics on the idealized end and biology on the other.

Teaching the “Energy Story” Next Time

As described in the page on my Physics 131, I like to present content in terms of concepts first. I want students to think conceptually and then move to translating that story to mathematics. I refined this process this past semester and next time, I want energy the energy story to be presented thus:

  • What types of energy do you have at the beginning/end?
  • Are the totals the same or did some come in or out?
  • What came in or out?

In general, ask them to structure it as:

  • Initial energies
    • What went in/out and as heat/work.
      • Final Energies

Also, as we did on the forces unit: go through all the problems for the unit doing just the story first. Ask them to keep their work. Then cycle back through and solve.

Reflecting on an observation of 2nd and 3rd year life-science students’ definitions of scientific models

This semester, Physics 131 is back to a 75-mintue twice-a-week schedule after some the return to in-person learning necessitated experimentation with 50-minute thrice-a-week versions, and we have confirmed what was stated in Michaelsen et al’s book on Team Based Learning: longer course sessions are vastly superior in this mode. Students have more time to explore more problems without interruption. This was manifest yesterday when I had more time to let students explore the definition of a scientific model, the results of which yielded some interesting insights.

Continue reading Reflecting on an observation of 2nd and 3rd year life-science students’ definitions of scientific models

An Important Paper on Math-As-Language

Redish, Edward F., and Eric Kuo. “Language of Physics, Language of Math: Disciplinary Culture and Dynamic Epistemology.” Science & Education 24, no. 5 (July 1, 2015): 561–90. https://doi.org/10.1007/s11191-015-9749-7.

I recently finished this paper on the differences in the use of mathematics between physics and mathematics as viewed from a linguistics/semantics standpoint and it was quite informative. Often folks discussing undergraduate curricula (including here at UMass Amherst) speak of the need to simply require physics majors to take more math courses. This paper provides an interesting counter perspective. This paper may also be an interesting addition to P691G.

I also think that this paper, along with several of the references therein that I would like to read, has further reinforced my idea that the prep for 131 should be reconsidered. I really think that it should be, to quote the paper, “without the equations.” I will, of course, keep the mathematical reviews as needed because we will do math but a strong conceptual stance in preparation is the way to go. In class, we can then focus on the translation to mathematics as an explicit skill.

Yesterday, I met with Theresa Austin, of the College of Education’s Language Literacy, and Culture program, and Adena Calden of the Department of Mathematics, about this issue. The goal being to determine what insights from the teaching of English to ESL students could perhaps be employed to teach my students their second language of mathematics. The conversation was productive. In particular, she provided an excellent procedure for the in-class translation exercise:

  1. Let students try to translate the physical concept themselves into mathematical language.
  2. Allow them to collaborate as a team to form a communal definition.
  3. Have each team write their definitions on the whiteboards.
  4. Do a gallery walk activity involving critique and voting for the best one.

For step 4, I will need to think more about how to facilitate constructive criticism. Perhaps Chris Ertl, who has done some neat work on poster sessions for the labs, can provide some good suggestions.